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RGASP: Assessment of Gene-Finding Tools in the High-throughput Era
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experimental

methods, such as art for those gene-finding tools. As In previous gene-
RNASeq, are changing the information landscape of finding assessments---pioneered by the an
genomes and transcriptomes. Dealing with the large  assessment on Drosophila Adh region (the "first"
amounts of sequencing data becoming available is one =~ GASP [Reese et al, 2000]), and followed after by
of the new challenges facing computational biologists. EGASP (the "ENCODE" GASP [Guigo et al, 2006])
Gene-finding software tools can make use of this new and NGASP (the "worm" GASP [Coghlan et al,
type of experimental evidence in order to improve the  2009])---, the main objectives can be summarized in
gene structures they are predicting. To assess the  two: 1) testing the available prediction methods in an
various ways this data can be employed we organized objective and systematic manner, and 2) delivering an

ne RNASeq Genome Annotation Assessment Project  independent assessment of the state of the art to the

RGASP). Several groups have improved their state-of-  research community using those tools. Three different
ne-art gene-finders or have developed new tools that  aspect were considered: a) the status of

can incorporate RNASeq data as evidence to better = computational methods to map human RNAseq data
define gene-loci and alternatively spliced transcripts. iInto the predicted gene structures, b) how they
Here, we present the assessment, on three models  assemble such data into different transcripts, and c)
organims, the fruit-fly, worm and human, of the state-of-  the capability to quantify the abundance of those

ROUND 1

Right Figure shows comparison of
different sequencing platforms used by
submitters (Mar and Tyl on this example):
Solexa, lllumina, Helicos or a mixture.
There does not appear to be a significant
difference; the higher number of Solexa
datasets may improve the predictions.

TN FN. TP FP, TN FN.
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transcripts in particular datasets. In summary, fly and
worm predictions were better than those for human
datasets, mainly reflecting the transcriptional complexity
underlying our species genomes. This means that there
Is still a need for improving the gene models to capture
that complexity. Yet, protein coding exons are still better
located than non-coding features of transcripts, I.e.
UTR-exons or RNA-genes. Lowly expressed genes are
not as well predicted as highly expressed ones. The
spike-ins showed that the relative quantification is very
good between the methods, although the absolute
values vary significantly.
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RGASP was Initially designed to compare pHiEhMAN

what kind of predictions the algorithms

produced when using pair end reads, single =, , "

reads and reads produced by different
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technologies such as Helicos, etc...
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pseudogene Left Figure shows novel predictions around the @ - :yqiit B e R R
l UGTS8 locus using human RNAseq data from -
Ve - K562 and GM12878. As highlighted at the circle,
L multiple submitters appear to have predicted
il d novel exon In the region not covered by
) ; GENCODE annotation. Experimental Validation
il | _— of similar predicted exons that are predicted by Avobe Figure shows comparison of sensitivity/specificity of
amotaon | at least 5 submitters are being done by RTPCR the introns predicted by the different methods and substantial
LS to estimate how many new exons can be found variation can been seen between the different methods. The
outside the GENCODE annotation. better methods reached a Sn/Sp level of 0.6 in this analysis.

ROUND 2

Since participants submitted over 300 predictions in round 1 using various  HUMAN
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combination of data it was difficult to assess which algorithm performed i
consistently well in the different organisms. Therefore it was decided to WDW 1 M%
- : - CIREN (hoNN PR |
re-run the assessment using just one RNA-seq pair-end dataset that was o
equivalent across the three species and of comparable depth. i
Left Figure compares CDS predictions for | VoL
-; both round 1 and round 2 data to examine WORM FLY
g S “ y which species data the different algorithms i | 1
: . | : perform better (flexible borders eval). From A s AT RS DN R N e e
i 1 | . round 2 data it appears that the complexity a3 IR il ik | Lo ’
o too il - I L X : X
B - BT e of the human RNA-seq data causes less RN RN I S0 N M M M T N
' accurate predictions than for fly and worm ERRRRR R RN R R R R AR RN RN RN
-5 M e S N LU S N B B for the majority of submitters. e
d mANA Reporter and capture probes
f-”'_?;_.;fi.f 'Ya t m:nn Nanostring methodology QUAN I IFICAI ION 9875 (34%) 7696 (27%) 2606 (9%) 20177 (70%)
AUt " /" Jeesmee  Nature Biotech 26(3) 2008 _ _ _ _ it 1 29046
ML One major aspect of the RGASP assessment is to examine if the
e e o e e _ _ Human 4188 (36%) 838 (7%) 0(0%) 5026 (43%)
Y algorithms can be used to correctly predict RPKM values that are  pseuocenes / 11784
® Souton based mANA hyrizaton Taoeene Dousrms relative to expression level of the different transcripts within a locus. | 5855 (20%) 6422 (32%) 5516 (27%) 17793 (88%)
? “emngg, Lo ! — : : : !
T P S L e Nanostring methodology was used to independently verify expression 20198
S ’a“% il me : . 1630 (13%) 5705 (47%) 4756 (39%) 12091 (99%)
. level using a non-PCR based method (see Left Figure). Fly  1ooas
f‘“—"'@f"ﬁo“& l The nanocount results from over 100 probes are compared against K562 RPKM values plotted against nanostring results
o e e, P RPKM values provided by predictors on the GENCODE annotation for ==
e | e csren o the K562 dataset from round 1 in Right Figure. Finally the Table shows = , .
%:’@ e | oo | 8588088 | 3 the number of loci expressed at different levels (low <1 RPKM, _ = o e P
, . ' . . . . £ ' R RO " aon
. cere?2 | 3990898 | 2 medium<10 RPKM, and high >10 RPKM), and this was used to examine g - o PO L
e e [t B which transcripts were expressed in the different reference annotation = S TR M
e e dataset to calculate a representative Sn/Sp value for the prediction 0 e N
=~ vg;,,{,i . 0.01 :
s comparison below. - oo (mamocoumto)



